534 research outputs found

    Competing charge density waves and temperature-dependent nesting in 2H-TaSe2

    Full text link
    Multiple charge density wave (CDW) phases in 2H-TaSe2 are investigated by high-resolution synchrotron x-ray diffraction. In a narrow temperature range immediately above the commensurate CDW transition, we observe a multi-q superstructure with coexisting commensurate and incommensurate order parameters, clearly distinct from the fully incommensurate state at higher temperatures. This multi-q ordered phase, characterized by a temperature hysteresis, is found both during warming and cooling, in contrast to previous reports. In the normal state, the incommensurate superstructure reflection gives way to a broad diffuse peak that persists nearly up to room temperature. Its position provides a direct and accurate estimate of the Fermi surface nesting vector, which evolves non-monotonically and approaches the commensurate position as the temperature is increased. This behavior agrees with our recent observations of the temperature-dependent Fermi surface in the same compound [Phys. Rev. B 79, 125112 (2009)]

    Structural disorder versus chiral magnetism in Cr1/3_{1/3}NbS2_2

    Full text link
    The crystal structure of a disordered form of Cr1/3_{1/3}NbS2_2 has been characterized using diffraction and inelastic scattering of synchrotron radiation. In contrast to the previously reported symmetry (P63_322), the crystal can be described by a regular twinning of an average P63_3 structure with three disordered positions of the Cr ions. Short-range correlations of the occupational disorder result in a quite intense and structured diffuse scattering; a static nature of the disorder was unambiguously attributed by the inelastic x-ray scattering. The diffuse scattering has been modeled using a reverse Monte-Carlo algorithm assuming a disorder of the Cr sub-lattice only. The observed correlated disorder of the Cr sub-lattice reduces the temperature of the magnetic ordering from 130 K to 88 K and drastically modifies the field dependence of the magnetization as it is evidenced by the SQUID magnetometery. We conclude, that in contrast to the helicoidal spin structure assumed for P63_322 form, the compound under study is ferromagnetically ordered with a pronounced in-plane anisotropy

    Multi-wavelength Emission from the Fermi Bubble III. Stochastic (Fermi) Re-Acceleration of Relativistic Electrons Emitted by SNRs

    Get PDF
    We analyse the model of stochastic re-acceleration of electrons, which are emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then into the Galactic halo, in order to explain the origin on nonthermal (radio and gamma-ray) emission from the Fermi Bubbles (FB). We assume that the energy for re-acceleration in the halo is supplied by shocks generated by processes of star accretion onto the central black hole. Numerical simulations show that regions with strong turbulence (places for electron re-acceleration) are located high up in the Galactic Halo about several kpc above the disk. The energy of SNR electrons that reach these regions does not exceed several GeV because of synchrotron and inverse Compton energy losses. At appropriate parameters of re-acceleration these electrons can be re-accelerated up to the energy 10E12 eV which explains in this model the origin of the observed radio and gamma-ray emission from the FB. However although the model gamma-ray spectrum is consistent with the Fermi results, the model radio spectrum is steeper than the observed by WMAP and Planck. If adiabatic losses due to plasma outflow from the Galactic central regions are taken into account, then the re-acceleration model nicely reproduces the Planck datapoints.Comment: 33 pages, 8 figures, accepted by Ap

    Analytical and numerical studies of central galactic outflows powered by tidal disruption events -- a model for the Fermi bubbles?

    Full text link
    Capture and tidal disruption of stars by the supermassive black hole in the Galactic center (GC) should occur regularly. The energy released and dissipated by this processes will affect both the ambient environment of the GC and the Galactic halo. A single star of super-Eddington eruption generates a subsonic out ow with an energy release of more than 105210^{52} erg, which still is not high enough to push shock heated gas into the halo. Only routine tidal disruption of stars near the GC can provide enough cumulative energy to form and maintain large scale structures like the Fermi Bubbles. The average rate of disruption events is expected to be 10−410^{-4} ~ 10−510^{-5} yr−1^{-1}, providing the average power of energy release from the GC into the halo of dW/dt ~ 3*1041^{41} erg/s, which is needed to support the Fermi Bubbles. The GC black hole is surrounded by molecular clouds in the disk, but their overall mass and filling factor is too low to stall the shocks from tidal disruption events significantly. The de facto continuous energy injection on timescales of Myr will lead to the propagation of strong shocks in a density stratified Galactic halo and thus create elongated bubble-like features, which are symmetric to the Galactic midplane.Comment: 11 pages, 5 figures. The title and abstract have been changed. Accepted by Astrophysical Journa

    The origin of the 6.4 keV line emission and H2_2 ionization in the diffuse molecular gas of the Galactic center region

    Get PDF
    We investigate the origin of the diffuse 6.4 keV line emission recently detected by Suzaku and the source of H_2ionization in the diffuse molecular gas of the Galactic Center (GC) region. We show that Fe atoms and H_2 molecules in the diffuse interstellar medium of the GC are not ionized by the same particles. The Fe atoms are most likely ionized by X-ray photons emitted by Sgr A* during a previous period of flaring activity of the supermassive black hole. The measured longitudinal intensity distribution of the diffuse 6.4 keV line emission is best explained if the past activity of Sgr A$* lasted at least several hundred years and released a mean 2-100 keV luminosity > 10^38} erg s^{-1}. The H_2 molecules of the diffuse gas can not be ionized by photons from Sgr A*, because soft photons are strongly absorbed in the interstellar gas around the central black hole. The molecular hydrogen in the GC region is most likely ionized by low-energy cosmic rays, probably protons rather than electrons, whose contribution into the diffuse 6.4 keV line emission is negligible.Comment: 5 pages, 4 figues, accepted for publication in the Astrophysical Journal Letter

    Gamma-Ray Emission from Molecular Clouds Generated by Penetrating Cosmic Rays

    Full text link
    We analyze the processes governing cosmic-ray (CR) penetration into molecular clouds and the resulting generation of gamma-ray emission. The density of CRs inside a cloud is depleted at lower energies due to the self-excited MHD turbulence. The depletion depends on the effective gas column density ("size") of the cloud. We consider two different environments where the depletion effect is expected to be observed. For the Central Molecular Zone, the expected range of CR energy depletion is E≲10E\lesssim 10 GeV, leading to the depletion of gamma-ray flux below Eγ≈2E_\gamma\approx 2 GeV. This effect can be important for the interpretation of the GeV gamma-ray excess in the Galactic Center, which has been revealed from the standard model of CR propagation (assuming the CR spectrum inside a cloud to be equal to the interstellar spectrum). Furthermore, recent observations of some local molecular clouds suggest the depletion of the gamma-ray emission, indicating possible self-modulation of the penetrating low-energy CRs.Comment: 10 pages, 5 figures, accepted for publication in Ap
    • …
    corecore